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Abstract

Bioreactors utilizing genetically modified bacteria under realistic conditions are difficult to monitor and model because of imperfect
mixing, disturbances and uncertain kinetics. In this work, neural filtering and control have been applied to such a nonideal fed-batch
bioreactor containing recombinantEscherichia coli to produce�-galactosidase. Data simulating industrial fermentation were generated
by introducing incomplete mixing in the broth and Gaussian noise in the feed stream. Based on a previous study, an Elman neural network
was employed to represent the simulated data. To this, an autoassociative network was added in order to filter the noise and a feed forward
network to control the fermentation. Performance of the fermentation with this system of three neural networks optimized together has
been shown to be superior to sequential optimization, neural control without filtering, PID control with filtering, and also a noise-free
fermentation. Thus, a suitably designed system of neural networks provides rapid on-line estimations and improves bioreactor performance
under conditions simulating industrial fermentation. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Two salient features of ideal bioreactors get diminished
on scaling up from laboratory to production scale. One
is macroscopic homogeneity of the fermentation broth; in
large bioreactors it is difficult to ensure perfect mixing
throughout the vessel at all times. The other feature is the
intrusion of disturbances in industrial-scale operation. Prac-
tical and economic restrictions make it difficult to control
large reactors as accurately as small ones. Since distur-
bances (or process noise) are usually carried by inflow
streams, fed-batch and continuous fermentations are more
likely to be affected than batch fermentations. However, the
kinetics of many fermentations employing genetically mod-
ified (recombinant) bacteria are such that better yields of
product are obtained in fed-batch and two-stage continuous
cultivations than in batch operation [1,2].

The absence of perfect mixing is not necessarily a nega-
tive feature of large bioreactors, especially those involving
competition between two or more kinds of cells. A recom-
binant fermentation broth contains two kinds of cells: (a)
those containing an externally introduced plasmid and (b)
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cells without this plasmid. Both types of cells utilize the
substrates but only the plasmid-bearing cells can synthesize
the desired recombinant protein. In such a competitive envi-
ronment, the attainable concentration of the protein is max-
imized by an optimal degree of mixing [3,4], which may
vary with time.

Imperfect mixing provides another benefit in fermen-
tations utilizing temperature-sensitive plasmids. These
plasmids replicate extremely slowly below a threshold tem-
perature and uncontrollably fast above this temperature.
Conventional operation is to run the fermentation for short
durations alternately above and below the threshold temper-
ature [5]. By maintaining less than complete mixing in the
broth, it is possible to avoid temperature cycling and have
isothermal operation below the threshold temperature [6].

Noise carried by the feed stream is a common feature of
production scale chemical and biological reactors. Fermen-
tations employing genetically altered bacteria are strongly
susceptible to inflow noise, which may change the metabolic
pattern, productivity and stability. Traditionally, process
noise has been viewed as undesirable, and therefore, many
bioreactor operations have tried to eliminate the noise as
much as was practically possible [7,8]. This approach has
been questioned by a recent study [9], which has shown that
allowing disturbances of a prescribed pattern to go through
is more beneficial than unregulated noise or the complete
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Nomenclature

D overall dilution rate (h−1)
Da axial dispersion coefficient (cm2/h)
Dj internal dilution rate forj-th

region (h−1)
k1, k2, k3, k4 reaction rate constants (h−1)
K, K1, K2, Kp equilibrium constants (g/l)
L characteristic length for bioreactor (cm)
Q substrate feed rate (1(el)/h)
Q1 internal flow rate from region (1)

to region (2) (1(el)/h)
Q2 internal flow rate from region (2)

to region (1) (1(el)/h)
r+
Aj , r

−
Aj rates of change of A-compartments

in j-th region (h−1)
r+
Gj , r

−
Gj rates of change of G-compartments

in j-th region (h−1)
r+
Pj rate of change of P-compartment

in j-th region (h−1)
r+
Ej rate of change of E-compartment

in j-th region (h−1)
Sf substrate concentration in the feed

stream (g/l(el))
S0 initial substrate concentration

in bioreactor (g/l(el))
Sj substrate concentration in

j-th region (g/l(el))
sj Sj /S0
t time (h)
u fluid velocity (cm/h)
V total volume of the broth (l(el))
Vj volume of broth inj-th region (l(el))
v1 V1/V0
X overall biomass concentration in

bioreactor (g/l(el))
x X/S0

X+
j concentration of plasmid-bearing

cells in j-th region (g/l(el))
X−

j concentration of plasmid-free
cells in j-th region (g/l(el))

x+
j X+

j /S0

x−
j X−

j /S0

x+ x+
1 + x+

2
x− x−

1 + x−
2

x+
Aj , x

−
Aj concentrations of A-compartments

in j-th region (g/g)
x+

Gj , x
−
Gj concentrations of G-compartments

in j-th region (g/g)
x+

Pj concentration of P-compartment
in j-th region (g/g)

x+
Ej concentration of E-compartment

in j-th region (g/g)

Yx/s yield coefficient for biomass
from substrate (g/g)

Greek symbols
∆j Qj /V1 (h−1)
ϕ mass fraction of recombinant cells
γ 11, γ 22 stoichiometric coefficients for

intra-cellular reactions
ω V2/V1
µ overall specific growth of

biomass (h−1)
µ+

j , µ−
j specific growth of cells inj-the

region (h−1)
µj overall specific growth rate inj-th

region (h−1)
σ+

j , σ−
j intra-cellular substrate concentration

in j-th region (g/l(el))
θ plasmid loss probability
τ tD

Superscripts
+ plasmid-containing cells
− plasmid-free cells

absence of noise. That study extended prior work [10] by
prefixing a neural filter to a neural controller, the latter
having been shown earlier to provide greater concentrations
of recombinant cell mass and its product,�-galactosidase,
than adaptive PID control.

One limitation of the two previous studies was that first
the controller was optimized for an imperfectly mixed,
noise-affected fermentation; this was then coupled to a
neural filter and the performance of the bioreactor was de-
termined for different filtered variances of Gaussian noise
in the feed stream. However, as Fig. 1 shows, the filter,
the controller and the bioreactor are interactive, and there-
fore, the best performance requires both neural networks
(indeed three, as will be explained later) to be designed
together and updated continually during the fermentation.
This integrated optimization is the subject of the present
communication.

2. Problem description

The temperature-sensitive plasmid whose performance
has been studied here is pOU140 contained in cells of
Escherichia coli CSH50. Betenbaugh et al. [5] reported
a threshold temperature of 37◦C for this plasmid. Below
37◦C, the replication rate is too slow to sustain the fermen-
tation; above this temperature the replication rate shoots up
so dramatically that the plasmid load soon becomes fatal
for the cells. So they proposed operating the fermentation
initially above 37◦C until a sufficiently large concentration
of plasmids is established, but the temperature is lowered
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Fig. 1. Schematic diagrams for a structured cell model [11] and its application in a model for fluid mixing in a fed-batch bioreactor [6].

before this reaches a lethal level. The large number of
plasmids per cell enables low temperature (below 37◦C)
fermentation to be carried out for a few hours, after which
the temperature is raised again.

To overcome the difficulties of cyclic temperature oper-
ation with run-away plasmids, Patnaik [6] proposed con-
trolling the intensity of mixing in such a way as to favor
plasmid-bearing cells. This allowed the fermentation to be
carried out below 37◦C in fed-batch mode for more than
20 h without appreciable loss of plasmid stability. This du-
ration was long enough to reach a practical stationary state.
Based on this concept and a kinetic model developed earlier
[11], Patnaik [6] formulated a model incorporating imper-
fect mixing, segregational instability and an impure inocu-
lum (i.e. an inoculum that has some plasmid-free cells). This
model, whose equations are presented in Appendix A, was
the basis for neural control and neural filtering studies de-
scribed next. Unlike previous work with this system [5,11],
the presence of plasmid-free cells at the beginning of fer-
mentation is both a practical consideration and a theoretical
requirement for a sustainable process [12].

The model describes the fermentation at two levels. The
intra-cellular reactions are expressed according to the kinet-
ics proposed by Nielsen et al. [11], who divided each cell
conceptually into four compartments containing, A: mRNA,
tRNA and ribosomes; P: recombinant DNA; E: recombinant
protein; and G: genomic DNA and structural material. Mix-
ing in the bioreactor is quantified by visualizing the broth
to consist of two regions, with each region feeding the other
internally (Fig. 1). Thus, each region functions as a con-
tinuous flow reactor, and the broth as a whole operates in
fed-batch mode because of the inflow of substrate. Conse-
quently, there are two internal dilution rates,D1 for region
(1) andD2 for region (2), in addition to an overall dilution
rateD. These are defined in Eq. (A.1) of Appendix A.

If D1 or D2 is large, that region has intense mixing, while
a low dilution rate indicates poor mixing. In the limiting
cases,{D1, D2 → ∞} indicates a perfectly mixed broth,
while {D1, D2 → 0} denotes complete segregation of the
two regions. These limits are, however, ideal conditions, and
in practical operationD1 andD2 have finite non-zero values.

Although D also influences mixing, its principal role is in
determining the availability of substrate for cellular reactions
[6].

The intra-cellular and extra-cellular processes are linked
by transport across the cell walls as described by Nielsen
and Villadsen [13]. The relevant equations are presented
in Appendix A. Previous studies [8,14,15] have shown
that inflow noise in a bioreactor may be characterized ad-
equately by a Gaussian distribution. So the reactor model
in Eqs. (A.12)–(A.18) was ‘corrupted’ by adding noise
with a variance of 8% of the inlet flowrate and concen-
tration. This variance has been shown earlier [9] to max-
imize �-galactosidase activity. The coupled equations for
intra-cellular kinetics and bioreactor dynamics were solved
both without and with noise; the initial dilution rates were
set at optimum values determined earlier [6]:D1 = D2 =
0.3 h−1; D = 0.1 h−1.

Data generated by the model represented a simulated in-
dustrial fermentation. The simulated plant has experimental
validity because the kinetics, the mixing model and Gaus-
sian distribution for noise have all been separately verified.
Because practical and commercial difficulties limit the data
that can be obtained from an industrial bioreactor, many
authors [14,16–18] have recommended the use of simu-
lated data from a combination of experimentally validated
models. This approach also allows plant performance to be
simulated under a variety of conditions so that appropriate
control strategies may be developed.

3. Neural filtering and control

Because practical difficulties and sometimes proprietary
restrictions limit the exploration of industrial bioreactors
under disturbed conditions, many authors [14,16,17] have
found it useful to simulate the behavior by applying distur-
bances to a model of an ideal bioreactor. Adopting this ap-
proach, Patnaik [10,15] added Gaussian noise in the flow rate
of the feed stream of a model developed earlier [6] in order
to generate data mimicking an industrial-scale fermentation.
These data were then considered to represent a simulated
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Fig. 2. Structure of an Elman neural network. Input neurons: I1, I2 and
I3; output neurons: O1 and O2; hidden neurons: H1, H2, H3 and H4;
bias neurons: B1 and B2; recurrent neurons: R1 and R2.

nonideal bioreactor and a neural network was designed to
portray the performance. In a practical context, the network
would simulate real data from an operating bioreactor.

As discussed before [15], feed forward networks with pre-
fixed filtering devices [8] are a contrived and often inade-
quate method to depict a dynamic process such as fed-batch
fermentation, and they can result in significant overparam-
eterization [19]. A neural network with internal feedback
provides a more natural representation of fermentation dy-
namics with internal recycles of the kind shown in Fig. 1.
Given a neural network with an input layer, a hidden layer
and an output layer, one may provide recycle of informa-
tion to the input layer from either the output layer or the
hidden layer. The former design is called a Jordan network
and the latter an Elman network [20]. Because the recycle
streams in mixing models such as Fig. 1 are within the sys-
tem, the Elman configuration (Fig. 2) has greater fidelity to
the actual situation. This type of network has been shown
[15] to represent�-galactosidase fermentation in the pres-
ence of both random noise and large disturbances better than
a feed forward ANN and the radial basis ANN employed
by Thompson and Kramer [17]. Details of how the Elman
ANN is trained have been described elsewhere [15,19].

The interactions are both physiological and physical.
Physiological interactions are evident from the dependence
of the specific growth rate on intra-cellular concentrations
(Eqs. (A.4), (A.7) and (A.8)) and of the substrate concentra-
tion in the bioreactor on the specific growth rate (Eqs. (A.17)
and (A.18)). The physical interactions gain significance
with increasing size of the reaction vessel. In a small reac-
tor, nearly complete mixing is achieved, whereas in large
reactors there are significant differences even on a micro-
scopic scale [21]. The spatial gradients affect the chemotac-
tic movements of recombinant cells and plasmid-free cells,
dispersion of cells and substrate, and consequently, the ac-
cessibility of substrate to both kinds of cells [6]. Since quan-
tifying these effects by a mathematical model is difficult and
requires intricate measurements, a recurrent neural network

may be trained to portray the physical interactions without
requiring detailed measurements or a detailed model.

Coupling this recurrent network to a feed forward neu-
ral controller generated better performance than was possi-
ble with adaptive PID control [10]. Therefore, a follow-up
study [9] extended this work in two ways. Firstly, the Gaus-
sian noise was considered to have components of different
variances rather than the single variance considered earlier.
Each component has a time-dependent mean equal to the
instantaneous value of the flow rate. This is more closely
representative of a real situation [8,19,22]. Secondly, a neu-
ral filter was added prior to the controller so as to prune the
variance of the disturbances. Since the inputs and outputs of
the filter are the same, an autoassociative network was cho-
sen according to previous recommendations [15,19,23]. The
network was trained to allow noise of a prescribed variance
to go through with the feed stream.

The filtering study showed that the peak concentration of
�-galactosidase attainable with a neural filter was larger than
with a static filter or even in the absence of noise. Although
coupling of a neural filter to a neural controller improved
�-galactosidase production, this could not be said to be the
maximum possible because of two reasons. First, the two
networks had been optimized separately, first for control
[10] and then for filtering [9]. Secondly, the variance of the
disturbances that was allowed to pass through the filter was
the same throughout the fermentation; this may not be a good
approximation because in a real situation it is not known
in advance how widely the components of the noise differ
in their variances. So these limitations have been relaxed in
the present simulation. The neural networks representing the
filter, the controller and the bioreactor were optimized during
each interval of time according to the flowsheet in Fig. 3,
and the best variance during each interval was determined
as that which maximized the�-galactosidase concentration
during that period. This allowed the optimal variance to be
a function of time.

Fig. 3. Information flow diagram for neural filtering and control of a
bioreactor.
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4. Results and discussion

This communication presents results for a simulated
fed-batch�-galactosidase fermentation where the complete
neural system was optimized over short successive intervals
of time until the end of fermentation. Fig. 3 depicts the logic
diagram. Whereas the “process” box would normally denote
a bioreactor, here it contains an equivalent Elman neural
network [15]. As explained before [9,10], the controller
was a feed forward network and the filter an autoassocia-
tive network. Even though a feed forward network is easy
to design, an autoassociative configuration is germane to
the functioning of the filter, which has the same inputs and
outputs. The duration of fermentation (20 h) was discretized
into intervals of 0.5 h and the weights of the three neural
networks were computed during each time interval so as to
maximize �-galactosidase concentration during that inter-
val, using data at the end of the preceding interval as the
initial condition. This Markovian policy was chosen because
it has provided stable fermentations with high activities of
the recombinant protein for manyE. coli strains [8,10,24].

In fermentations with recombinantE. coli, maximiza-
tion of the concentration of the cloned-gene protein,
�-galactosidase, requires a high concentration of recombi-
nant cells [1,2]. So the time-domain profiles of these two
variables provide a good indication of the effects of control
and filtering. These profiles have been plotted in Figs. 4 and
5 for four situations: (1) without filtering and control; (2)
with neural control but no filtering of noise; (3) with neural
filtering and control, but with the two neural networks be-
ing optimized separately and (4) with both neural networks
(and that for the bioreactor) being optimized together.

In the absence of control of the bioreactor and filtering of
noise, the concentrations of recombinant cells and their prod-
uct decrease initially and begin to rise after 5 h. The decrease
of �-galactosidase concentration (Fig. 5) is much larger

Fig. 4. Evolution of the concentration of recombinant cells with time for
(1) uncontrolled fermentation: (2) neural control without filtering of noise;
(3) with neural filtering and control but with the networks optimized
separately; (4) integrated optimization of neural filter, neural controller
and the bioreactor.

Fig. 5. Evolution of�-galactosidase concentration with time for the four
cases shown in Fig. 4.

than might be expected from that of plasmid-harboring cells
(Fig. 4). This implies that noise affects the internal
metabolism and the structural stability of the plasmid,
whereas deterministic models [4,6] have expressed only
segregational instability. This effect of noise is compatible
with the cell model in Fig. 1. Thorough the RNA and ribo-
somes of compartment A, the inflow substrate affects the
stability of rDNA (compartment P) and expression of the
recombinant protein (compartment E).

The increase in the concentrations after a length of
time and the eventual “constant” maxima have been ex-
plained elsewhere [6,10] and are briefly recapitulated here.
Plasmid-harboring cells grow flagellae and streamline their
shape [25], which help their movement through the fermen-
tation broth. As shown in Fig. 1, the inoculum is injected
into one region and allowed to disperse throughout. Thus,
initially the inoculated region has both plasmid-bearing and
plasmid-free cells in low concentrations and, because of the
moderate degree of mixing (D1 = D2 = 0.3 h−1), the other
region is almost devoid of cells. The practical implication
of this conceptual demarcation is the existence of regions of
cell-free substrate and concentrated pockets of cells with in-
adequate accessibility to substrate. This impedes growth and
protein synthesis, causing the initial decrease in their con-
centrations (Figs. 4 and 5). Eventually, however, the faster
motion of plasmid-harboring cells promotes their homoge-
neous distribution, mixing has reached an optimum level
and there is sufficient inflow of substrate. Owing to these
factors and the larger spatially averaged concentrations per-
ceived by plasmid-containing cells in an imperfectly mixed
broth [26], there is better utilization of substrate and conse-
quent increase in the concentrations. Because of metabolic
limitations and competition with plasmid-free cells, the
concentrations stabilize after a certain length of time.

Table 1 compares the “steady-state” performance of the
bioreactor under different conditions. As seen in Figs. 4
and 5, strictly constant outputs are not achieved because
of variable mixing in the broth and the influx of noise. So
the data reported are the values averaged from the 15th



538 P.R. Patnaik / Chemical Engineering Journal 84 (2001) 533–541

Table 1
Comparison of bioreactor performance under different methods of operation

Performance indicator Uncontrolled
(absolute values)

Neural control without
filtering (% increase)

Separate control and
filtering (% increase)

Combined control and
filtering (% increase)

Recombinant cells (g/l) 19.81 26.75a 45.03a, 14.42b 71.58a, 18.31b

�-Galactosidase (g/g biomass) 0.222 27.03 46.40, 15.25 72.52, 17.85
�-Galactosidase (g/l) 0.285 22.16 38.60, 13.51 58.59, 14.43

a Percentage increase over uncontrolled fermentation.
b Percentage increase over the preceding column.

to the 20th hour, when reasonably steady oscillations are
observed. Compared to uncontrolled fermentation, an inte-
grated neural system optimized dynamically achieved more
than 70% increase in recombinant cell mass concentration
per unit volume of broth and in�-galactosidase produc-
tion per unit cell mass. The addition of a neural filter to
a neurally controlled bioreactor enhanced�-galactosidase
concentration by 15% when the two were optimized se-
quentially and by a further 18% when optimized together
with the bioreactor model. The effects of other types of
filtering and of adaptive PID control are not shown because
it has been demonstrated earlier [9] that they are inferior to
a combination of neural networks.

The somewhat smaller increases in�-galactosidase con-
centration per unit volume of broth (Table 1) may be at-
tributed to the more sluggish response of the mass fraction
of recombinant cells (not shown) compared to their concen-
tration. Plasmid-containing cells respond more slowly to a
disturbance than plasmid-free cells do [27]. Consequently,
there is a larger percentage change in the concentration of
plasmid-free cells, and this reduces the change in the mass
fraction. Since conversion of�-galactosidase concentration
per unit cell mass to a volumetric unit requires division by
the mass fraction, the improvements reflected in the last
three columns of Table 1 become moderated. Nevertheless,
the enhancement of performance is substantial even in vol-
umetric terms. This may be attributed to resonance between
the natural frequency of the process and the controlled
frequency of noise in the filtered feed stream. However,
the natural frequency may change with time in a fed-batch
fermentation because of continual changes in volume, cell
concentrations and rheological properties. Hence, the ear-
lier attempt [9] to seek the best constant variance in the
outlet of the filter is restrictive and sub-optimal. Relaxing
this restriction in the present study, the variance which max-
imizes �-galactosidase concentration was determined for
each interval (0.5 h) of time. This is seen to increase from
5.3 to 8.0% during the span of 20 h (Fig. 6), a change of
more than 50%. Thus, it is not reasonable to design a neural
filter for a constant variance. While this appears to be the
first report of a time-dependent optimal variance, constant
optimal variances for other organisms and products [28,29]
support the inference from�-galactosidase that a neural
filtering and control configuration is superior to conven-
tional methods for rapid on-line estimations and control of
recombinant fermentations under nonideal conditions.

Fig. 6. Variation of the optimal variance of filtered noise with time for a
bioreactor optimized on-line by a neural filter and a neural controller as
in case (4) of Figs. 4 and 5.

5. Conclusions

Recombinant fermentations carried out under production
conditions are difficult to model and are susceptible to noise
carried by the feed stream. Previous work [9,10,29] had ex-
pressed the noise by a Gaussian distribution and it had been
shown that controlled filtering of noise resulted in greater
concentrations of the recombinant protein (�-galactosidase)
than no filtering or complete removal of noise.

Extending those studies, in this work the noise has
been characterized by a set of Gaussian distributions with
time-dependent means and variances. Three neural net-
works were employed — one for filtering, one for control
and a third for the fermentation itself. While neural control
without filtering of noise and a combination of filtering and
control optimized separately achieved increases between
22 and 46% in�-galactosidase concentration, this could
be enhanced to nearly 60% (for concentrations in g/l) and
72% (in g/g biomass) by optimizing the three neural nets
dynamically as shown in Fig. 3. The optimal variance of
the filtered noise increased by more than 50% during the
20 h fermentation, suggesting that earlier attempts [9,29]
to maintain the same concentration throughout might have
been too approximate.

These observations suggest four inferences:

1. Inflow noise prevalent in large bioreactor operati-
ons is more appropriately characterized by a mixture of
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Gaussian distributions than by a single
distribution.

2. Neural networks may be used to represent a nonideal
bioreactor, filter any disturbances continually and control
the fermentation.

3. Substantial improvement in the simulated�-galactosidase
concentration is possible by optimizing an autoasso-
ciative neural network for controlled filtering, a feed
forward network for on-line control and a recurrent
network for the bioreactor in a dynamic loop.

4. Because of the limitations of mathematical models and
measurement devices for large bioreactors, neural net-
works offer a convenient and rapid method for on-line
estimations and control even under disturbed conditions.

Appendix A

Patnaik [6] modified the equations proposed by Nielsen
et al. [11] to make them applicable for fed-batch operation
with plasmid-bearing cells present in the starting culture and
segregational instability. The broth is visualized to consist
of two regions, each functioning as a separate bioreactor
(Fig. 1). Internal recycle streams connect the reactors to
represent fluid circulation. Mixing is characterized by three
dilution rates, defined below

D1 =
(

Q + Q2 − Q1

V1

)
, D2 =

(
Q1 − Q2

V2

)
(A.1)

whereQ’s denote the flow rates andV1, V2 are the volumes
of broth in the two conceptual reactors. Metabolic reactions
take place inside the recombinant cells, there is partial re-
version of plasmid-bearing cells to plasmid-free cells, and
transport processes link the intra-cellular reactions to the
extra-cellular broth.

A.1. Kinetic equations inside the cells

A.1.1. Plasmid-bearing cells
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+
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(A.3)

The specific growth rate is

µ+
j = γ11r

+
Aj − (1 − γ22)(r

+
Gj + r+

Pj + r+
Ej ) (A.4)

A.1.2. Plasmid-free cells


dx−
Aj

dt

dx−
Gj

dt


 =

[
γ11 −1
0 γ22

][
r−
Aj

r−
Gj

]
−

µ−
j

D

[
x−

Aj

x−
Gj

]
(A.5)

Similar to Eqs. (A.3) and (A.4), we may write

[
r−
Aj

r−
Gj

]
=




k1σ
−
j x−

Aj

(σ−
j + K1)

k2σ
−
j x−

Aj

(σ−
j + K2)


 (A.6)

and

µ−
j = γ11r

−
Aj − (1 − γ22)r

−
Gj (A.7)

In these equations, the superscript (+) denotes cells con-
taining the plasmid, superscript (−) denotes cells without
the plasmid, and the subscriptj equals 1 or 2, depend-
ing on which mixing region is being analyzed. Eqs. (A.5)
and (A.6) do not contain concentrations and rates for the
P- and E-compartments because they are not present in
non-recombinant (plasmid-free) cells.

The overall specific growth rate of biomass in each region
is the weighted sum of the growth rates for the two kinds of
cells

µj =
(

x+
j

x+
j + x−

j

)
µ+

j +
(

x−
j

x+
j + x−

j

)
µ−

j (A.8)

Conservation equations relate the intra-cellular compo-
nents to the overall concentrations of plasmid-free and
plasmid-bearing cells.

x+
Aj + x+

Pj + x+
Gj + x+

Ej = x+
j , j = 1 or 2 (A.9)

x−
Aj + x−

Gj = x−
j , j = 1 or 2 (A.10)

The intra-cellular substrate concentrations,σ+
j andσ−

j , may
also be related to the concentrations,Sj , in the medium. This,
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however, is not straightforward like Eqs. (A.9) and (A.10).
The method has been described by Nielsen and Villadsen
[13], and it leads to

σ+
j = σ−

j = kK1Sj

k1(Sj + K)
, j = 1 or 2 (A.11)

A.2. Bioreactor model

dv1

dτ
= v1 (A.12)

dx+
1

dτ
= Yx/s

µx
[µ+

1 x+
1 (1 − θ) + ∆2x

+
2 − ∆1x

+
1 ] − x+

1

(A.13)

dx−
1

dτ
=Yx/s

µx
[µ+

1 x+
1 θ + µ−

1 x−
1 + ∆2x

−
2 − ∆1x

−
1 ] − x−

1

(A.14)

dx+
2

dτ
= Yx/s

µx

[
µ+

2 x+
2 (1 − θ) + (∆1x

+
1 − ∆2x

+
2 )

ω

]
− x+

2

(A.15)

dx−
2

dτ
=Yx/s

µx

[
µ+

2 x+
2 θ+µ−

2 x−
2 + (∆1x

−
1 − ∆2x

−
2 )

ω

]
− x−

2

(A.16)

ds1

dτ
= (1 + ω)sf + Yx/s

µx
(∆2s2 − ∆1s1) − s1 (A.17)

ds2

dτ
= Yx/s

ωµx
(∆1s1 − ∆2s2) (A.18)

Eqs. (A.13)–(A.18) incorporate the optimum dilution rate for
fed-batch fermentations [1,13],D = µx/Yx/s . Sincex and
µ, specified by Eqs. (A.20) and (A.21), vary as fermentation
progresses, so doesD. There is no conservation equation for
�-galactosidase because it is retained inside the cells.

From a mass balance forV2, it can be shown that

∆1 − ∆2 = ωD (A.19)

The total cell mass concentration (x) is calculated as

x = x+
1 + x−

1 + x+
2 + x−

2 (A.20)

and the overall specific growth rate is the volumetrically
weighted sum of the growth rates in the two regions

µ =
(

µ1 + ωµ2

1 + ω

)
(A.21)

The individual specific growth rates,µ+
j , µ−

j andµj with
j = 1 or 2, are computed according to Eqs. (A.4), (A.7) and
(A.8).
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